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The ground state of the Kondo 
insulator
Igor N. Karnaukhov 

The Kondo insulator (KI) is the state of an electron liquid in the Kondo lattice at half filling, studied 
within the mean field approach. We demonstrate, that the Z

2
-field, which is formed by interaction 

between electrons and local moments, leads to an insulator state in a lattice with a double cell lattice. 
In the ground state, electrons and local moments form singlets; in this case, no spin or charge density 
waves are realized in a lattice with a double cell. The Majorana-type gap spectrum of the quasi-particle 
excitations is realized in the Z

2
 -field. The gap in the spectrum decreases with increasing external 

magnetic field; it closes at a critical value at the insulator-metal phase transition point. In metal phase 
the lattice remains with a double cell. Thus, the introduction of the Z

2
 -field allows us to answer the 

key question what is the ground state of KI.

In contrast of the Kondo problem, whose exact solution was obtained in the case of weak interaction in the 
continuum  approximation1,2, the behavior of an electron liquid in a Kondo lattice is an unsolved problem in con-
densed matter physics. In the Kondo problem the scattering electrons by a local moment within a spin flip leads 
to the Abrikosov-Suhl resonance, a new behavior of an electron liquid at low temperatures and magnetic field.

Speaking of the Kondo lattice, we do not know the answers to simple but important questions like what is the 
ground state of an electron liquid in KI, and why is there a large Fermi surface at the conservation of the number 
of electrons, what is the nature of the charge and spin gaps in the excitation  spectrum3–10. When solving the 
Kondo lattice problem, it is also necessary to take into account the scattering of electrons by local moments with 
spin flip (as it takes place in the Kondo problem). The effective Hamiltonian should also not break the symmetry 
of the model Hamiltonian. This is a non-trivial problem that has not yet been solved, so we cannot say anything 
definitive about what the ground state is implemented in KI.

However, despite this pessimistic introduction, the purpose of the article is to answer a main question, what 
is the ground state of the electron liquid in the Kondo lattice at half filling. The antiferromagnetic exchange 
interaction between electrons and local moments leads to Z2-field, whose an uniform configuration forms a 
lattice with a double cell in KI. Note that charge or spin density waves are not realized in a lattice with a double 
cell; in this sense, this is an unusual state.

Model
The Hamiltonian of the spin-12 Kondo lattice dimension D H = H0 +HK includes two terms, the first of which 
is determined by energy of electrons, the second one is determined by the contact exchange interaction of these 
electrons with local moments when they are arranged regularly

where c†jσ and cjσ are the fermion operators determined on a lattice site j, σ =↑,↓ denotes the spin of electron, 
the hopping integral between the nearest-neighbor lattice sites is equal to one, the spin operators of electrons 
sαj = 1

2 c
†
jσ σ

α
σσ ′cjσ ′ are determined by the Pauli matrices σα ( α = x, y, z ), Sj is the spin-12 operator defined on the 

lattice site j (S is its value), J ≥ 0 and K > 0 are the magnitudes of the exchange interaction ( K = J > 0 corre-
sponds to an isotropic antiferromagnetic exchange interaction, J = 0,K > 0 corresponds to a strong anisotropic 
interaction), h is an external magnetic field ( g− factor is 2, we assume the Bohr magneton is 1), N is the total 
number of lattice sites.

(1)

H0 = −
∑

<i,j>

∑

σ=↑,↓
c†iσ cjσ − 2h

∑

j

(szj + Szj ),

HK = 2

N
∑

j=1

[Jszj S
z
j + K(sxj S

x
j + s

y
j S

y
j )],
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We study that the behavior of an electron liquid in the chain (1D) and on the square (2D) and cubic (3D) 
lattices at half-filling.

The ground-state of an electron liquid
We rewrite the term of the Hamiltonian (1) HK in detail in the following form

where spin operators are redefined in the terms of fermionic operators, szj =
1
2 (mj↑ −mj↓) , s+j = c†j↑cj↓ , 

s−j = c†j↓cj↑ , here mjσ = c†jσ cjσ , mj = mj↑ +mj↓ are the density operators.
We use the following presentation for the HK  term: 2Jszj S

z
j + K(s+j S

−
j + s−j S

+
j ) = −J(szj − Szj )

2

−K(s+j − S+j )
†(s+j − S+j )+ (J − K)(Szj )

2 − 1

4
(J + 2K)m2

j +
1

2
(J + K)mj + KS(S + 1) =⇒ 2�j(s

z
j − Szj )+ �j

(c+j↑cj↓ − S+j )+ �
∗
j (c

+
j↓cj↑ − S−j )+ 2µjmj . We will study in detail the case of S = 1

2 . (S
z
j )

2 -operator is conserved, 
µ-component shifts the Fermi energy, so it can be neglected. Using the Hubbard-Stratonovich transformation 
we introduce the effective Hamiltonian which is determined by two component Z2-field. The canonical functional 
is determined by the action, which follows from the Hubbard-Stratonovich transformation

where �k(τ ) is the wave function, β = 1
kBT

 , kB is the Boltzmann constant, T is temperature, k = (kx , ky , kz) is 
the wave vector.

The effective Hamiltonian Heff  determines the ground state of the model and low-energy excitations at half 
filling occupation. We expect that �j and �j are independent of time because of translational invariance. We study 
the ground state of the Kondo insulator, the low temperature hehavior of an electon liquid is not studied. and 
low-energy excitations corresponding to fluctuations of the saddle point solution are not taken into account.

We can define an effective Hamiltonian Heff  , which describes the behavior of the electron liquid in the 
Kondo lattice in the mean field approach Heff = H0 +

∑

j[2�j(s
z
j − Szj )+ �j(c

+
j↑cj↓ − S+j )+ �

∗
j (c

+
j↓cj↑ − S−j ).

Let us consider the equations for the one-particle wave functions ψ(j, σ)c†jσ φ(j,±σ)S±j  ( σ =↑,↓) with energy 
ε , the ψ(j, σ) and φ(j, σ) amplitudes satisfy the following equations :

where sums over the nearest lattice sites. The real variables �j → ±�j and �j → ±�j are identified with a 
static two component Z2 - field determined on the lattice sites. A confuguration of this field, which corresponds 
to an energy minimum, defines the ground state. The local moments form the flat band states, with energies 
εS = ±

√
�2 + �2 , here �2

j = �2, |�j]2 = �
2 . The local moments are arranged regularly at the lattice sites, their 

energy does not depend on Szj .
In contrast to well known  models11,12, where a free condiguration of the Z2-field ( �j = � ) corresponds to 

minimum of energy, an uniform sector with �j = −�j+1 = � , �j = −�j+1 = � corresponds to minimum of 
energy in the Kondo  insulator13,14. This field configuration leads to the lattice with a double cell, does not break 
the translational symmetry. Detailed numerical analysis shows, that an uniform sector with �j = −�j+1 = � , 
�j = −�j+1 = � corresponds to the ground state of an electron liquid for arbitrary values of J and K. Using 
Eq. (4) we calculate the energies of the quasi-particle excitations wich correspond to this uniform configura-
tion of the Z2-field. The spectrum includes two branches of local moments εS and two branches of electrons 
εs(k) = ±

√

�2 + �2 + |w(k)|2 , here w(k) =
∑D

α [1+ exp(ikα)] . The spectrum of the quasi-particle excitations 
is symmetric with respect to zero energy, has the Majorana type at half filling, the chemical potential is zero. 
Despite the fact that the effective Hamiltonian does not conserve the total spin, the wave function (4) at the same 
time conserve the total spin, since the flip of the electron spin is accompanied by the reverse flip for the local 
momentum located at the same lattice site. The values of the Z2-field components satisfy the energy minimum 
or the saddle point of the action, self-consistent equations have the following form at T = 0K

(2)HK =
N
∑

j=1

[2Jszj S
z
j + K(s+j S

−
j + s−j S

+
j )],

(3)S =
∑

j

�2
j

J
+

∑

j

|�j|2

K
+

∫ β

0

dτ
∑

k

�
†
k(τ )[∂τ +Heff (k)]�k(τ ),

(4)

(ε −�j)ψ(j, σ)+ �jψ(j,−σ)+
∑

1

ψ(j+ 1, σ) = 0,

(ε +�j)ψ(j,−σ)+ �
∗
j ψ(j, σ)+

∑

1

ψ(j+ 1,−σ) = 0,

(ε +�j)φ(j, σ)− �jφ(j,−σ) = 0,

(ε −�j)φ(j,−σ)− �
∗
j φ(j, σ) = 0,

(5)

2�

J
=

1

N

∑

k

�

|εs(k)|
+

�

|εS|
,

2�

K
=

1

N

∑

k

�

|εs(k)|
+

�

|εS|
.
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where � = � �= 0 for isotropic J = K > 0 , and � = 0, � �= 0 for anisotropic J = 0,K > 0 exchange interactions.
The behavior of the electron liquid in the case of strongly anisotropic, when J = 0 , K > 0 , and isotropic, 

when J = K > 0 , exchange antiferromagnetic interaction will be considered in detail.

Strongly anisotropic exchange interaction J = 0 , K > 0. For a strongly anisotropic exchange inter-
action, the Z2 - field is one-component, since � = 0 and �  = 0 . According to the numerical analysis, the solu-
tions �j = −�j+1 = � correspond to the minimum energy for arbitrary values of the exchange integral K and 
magnetic field h.

In  magnet ic  f i e ld  the  energ ies  of  the  quas i -par t ic le  exc itat ions  t ransform to 
εs,+(k) = ±

√

�2 + �2 + (h+ |w(k)|)2 , εs,−(k) = ±
√

�2 + �2 + (h− |w(k)|)2 , εS = ±
√
�2 + �2 + h2 . The 

spectrum is symmetrical with respect to zero energy or chemical potential, which is zero at half filling for an 
arbitrary magnetic field.

In the electron spectrum the gap opens at �  = 0 and is equal to 2� at � = 0 . According to Eq. (5) its value is 
determined by K and h. Using Eq. (5) we numerically calculate � as function of K and h for the chain (Fig 1a), 
square (Fig 1b) and cubic (Fig 1c) lattices. Should be note an universal behavior of an electron liquid in KI, the 
curves in Figs are similar for an arbitrary dimension. In a weak coupling limit at K → 0 the last term in Eq. (5) 
dominates, so � → K

2  . We ilustrate the spectrum of the quasi-particle excitations in Fig. 2a for the chain and 
Fig. 2b for the square lattice. The magnetic field breaks the spin degeneracy of the spectrum of the electrons, 
spreading the branches. The � - value (or the value of the gap) decreases with increasing magnetic field. A criti-
cal value of the magnetic field hc , at which the gap  closes15, depends on K−value. Numerical calculations of hc 
are shown in the Fig. 3 (the curves are calculated for different dimension of the model). In magnetic field hc the 
phase transition from insulator to the metal states is realized, KI is stable at h < hc . An uniform configuration 
of the Z2-field corresponds to minimum energy in metal state with the local doubling of period of the original 
lattice, in other words the metal state is also realized in the lattice with a double cell.

Magnetic properties of an electron liquid in KI are determined by both band electrons and local moments, 
they are determined by the uniform configuration of the Z2-field. Electrons and local moments form singlet 
states in the lattice with a double cell, which are not fixed in time. In absence of magnetic field the energies of 

Figure 1.  (Color online) �−value as a function of the exchange integral K and magnetic field h , calculated for 
the chain (a), square (b) and cubic (c) lattices.
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the quasi-particle excitations degenerate in spin, so the magnetization density M = 2
N

∑

j(s
z
j + Szj ) is zero. The 

magnetic field does not break this energy degeneracy for local moments, so the magnetization is given by an 
electron term M = 1

N

∑

j(mj,↑ −mj,↓):

The calculations of the magnetization density M as function of magnetic field and the exchange integral K are 
presented in Fig. 4 for different dimension of the model. Formula for a static magnetic susceptibility leads from 
M at h → 0 χ = 1

N

∑

k
�
2

(�2+|w(k)|)3/2 . The value of a static magnetic susceptibility is calculated as function of the 
exchange integral for different dimension of the model. The calculations are shown in Fig. 5, the susseptibility 
is a monotonic function of K.

An uniform configuration �j = −�j+1 stabilises the state with a double cell, a free configuration �j = �j+1 
corresponds to gapless state on original latiice with higher energy. We define an unstable configuration of the �
-field with one “defect” as −�j−2 = �j−1 = �j = �j+1 = −�j+2 . An unstable configuration of the � -field with one 
“defect” of size ν is defined as −�j−ν−1 = �j−ν = �j−ν+1... = �j+ν = −�j+ν+1 . According to numerical calcula-
tions, a total energy of individual ν “defects” is greater than the energy of one “defect” of size ν.

As an example, we present the calculations of the excitation energies in a chain with “one defect” as a function 
of the defect size ν . Configurations with “defect” in an uniform configuration have energies lying in the gap, a 
number of excitations increases with increasing ν , so that for 1 < ν < 5 only one excitation is split off from the 
continuous spectrum, for 5 < ν < 10 , 10 < ν < 15 there are 2 and 3 such states, respectively (see in Fig. 6). We 
note, that the lattice with a double cell is formed by an uniform configuration of �-field, and neither spin nor 
charge density waves are realized.

Isotropic exchange interaction J = K > 0. As noted above, in the absence of a magnetic field for an 
isotropic exchange interaction, the � - and �-components of the Z2-fields are equal and are solutions of Eq. (5). 
Along with this solution, there are also the number of non-trivial solutions: �  = 0 and � = 0 , � = 0 and �  = 0 . 
Three solutions of Eq. (5) have the same energies, which follows from numerical calculations of the ground 
state energy as funsction of J at h = 0 for different dimensions of the model. In the absence of an external mag-
netic field, the energies of the quasi-particle excitations are degenerate in spin. A magnetic field removes this 

(6)M =
h

N

∑

k

1

|εs+(k)| + |εs,−(k)|
(
�
2 + h2 − |w(k)|2

|εs,+(k)εs,−(k)|
+ 1).

Figure 2.  (Color online) The spectrum of quasi-particle excitations of electron liquid ( the gap in the spectrum 
of charge excitations is equal to 2� ) in the chain (a) and square lattice (b) as a function of the wave vector, 
calculated for � = 0.3 , h = 0.2 ( K = 0.524 for chain and K = 0.597 for square lqttice).

Figure 3.  (Color online) Critical value of magnetic field hc , at which the gap in the quasi-particle spectrum 
closes, as a function of the exchange integral, calculated for different dimension of the Kondo lattice.
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degeneracy. For arbitrary values of magnetic field and isotropic exchange integral, a solution �  = 0 , � = 0 cor-
responds to a lower energy than a solution � = 0 , �  = 0 . Another nontrivial solution �  = 0,�  = 0 not satisfy 
the self-consistent equations for � and � for arbitrary h. KI is determined by the XX-exchange interaction (the 
value of K in Hamiltonian (Eq. 1)), the ZZ-exchange interaction (the value of J in Hamiltonian (Eq. 1)) does not 
participate in the formation of KI. Scattering processes with spin flip lead to the formation of KI in the Kondo 
lattice as it takes place in the Kondo problem.

Conclusion
We studied the behavior of electron liquid in the spin-12 Kondo lattice at half-filling for different dimension. Due 
to antiferromagnetic exchange interaction between electrons and local moments a static Z2 - field is formed. An 
uniform configuration of the Z2 -field corresponds to the ground state of KI, leads to formation of a lattice with 

Figure 4.  (Color online) Magnetization density as a function of the exchange integral K and magnetic field h , 
calculated for the chain (a), square (b) and cubic (c) lattices.

Figure 5.  (Color online) Static magnetic susseptibility as a function of an exchange integral calculeted for 
different dimension of the model.
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a double cell. The spin or charge density waves are not realized in KI. In KI the spectrum of the quasi-particle 
excitations is symmetric about zero energy, as it takes place for the Majorana spectrum. At a critical value of a 
magnetic field, at which a gap closes, the phase transition to metal state is realized. The results of calculations 
largely coincide with the conclusions obtained by solving the one-dimensional Kondo lattice in the semiclassical 
approximation in the case of weak interaction in the continuum  approximation16. According  to16, KI forms due to 
strong antiferromagnetic fluctuations, the insulator state is realized in the case of the local doubling of period of 
the original lattice, the ground state in Kondo insulators is magnetically disordered. An exponentially small gap 
 in16 is obtained in the proposed formalism in an one-dimensional lattice only when the branches of flat bands εS 
are not taken into account in the calculations of � (Eq. 5). These branches are realized in a strong interaction, and 
it is not clear why they should disappear in a weak coupling. The value of the gap in the quasi-particle spectrum 
60 meV, observed experimentally in FeSi17, is obtained from the above calculations.
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Figure 6.  (Color online) The excitation energies corresponding to the Z2-field configuration with ν “defects” are 
calculated for various ν (marked with dots, the lines correspond to the excitation branches). Calculations were 
carried out for a chain with � = 0.3 , h = 0.1 , K = 0.476.
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